PhD School - Politecnico di Milano

Regulations of the PhD Programme in:

Energy and Nuclear Science and Technology

Cycle XXXVIII

Location: Milano Leonardo/Bovisa
1. General Information

PhD School - Politecnico di Milano

PhD Programme: **Energy and Nuclear Science and Technology**

Course start: November 2022

Location of the PhD Programme: Milano Leonardo/Bovisa

Promoter Department: Energy

Scientific Disciplinary Sectors

- FIS/03 Physics of matter
- ING-IND/08 Fluid machinery
- ING-IND/09 Energy systems and power generation
- ING-IND/10 Thermal engineering and industrial energy systems
- ING-IND/11 Building physics and building energy systems
- ING-IND/18 Nuclear reactor physics
- ING-IND/19 Nuclear power plants
- ING-IND/20 Nuclear measurements and instrumentation
- ING-IND/27 Chemical technologies

PhD School Website: http://www.dottorato.polimi.it/
PhD Programme Website: https://www.dottorato.polimi.it/corsi-di-dottorato/ingegneria/scienze-e-tecnologie-energetiche-e-nucleari

2. General Presentation

Energy plays a key role in the global challenge of a sustainable development, requiring immediate actions and appropriate solutions to support the energy transition and the related achievement of UN 2030 Agenda and the Green Deal program launched by the European Commission. In this framework, energy science and technology are of fundamental importance to face such ambitious and challenging goals. In addition, besides contributing to solutions for the energy sector, nuclear science and technology will also play a role in other crucial areas for a sustainable development strategy, such as advancing global health, preserving environment and cultural heritage and mitigating the effects of climate change.

The well-established interconnection between fundamental research and engineering applications requires a multidisciplinary high-level technical knowledge and problem-solving approach.
The STEN PhD Programme provides advanced scientific competences as well as complementary educational activities addressed to develop soft and transferable skills in the following areas: production, conversion and transmission of energy, rational use of energy and environmental control, thermal science, nuclear systems and nuclear fuel cycle, radioprotection and application of ionizing radiations, methods for safety and reliability analysis and development of innovative materials for energy applications.

The STEN PhD Programme proposes a multidisciplinary approach addressing the candidate to reach the “state of art” in the specific research field, to contribute to the growth of scientific and technological knowledge and to create new technological solutions as the answer to the global and industrial challenges.

The STEN PhD Programme is strictly related to the research activities of the Department of Energy. These activities are characterized by the existence of fundamental and applied interdisciplinary research areas in Energy and Nuclear sectors, that can be grouped -but not limited- as:

- thermo-fluid dynamics, heat and mass transfer, single and multiphase thermo-hydraulic, development and application of advanced measurement methods;
- development of innovative materials for renewable, conventional and nuclear energy production, energy storage, research in the field of surface and plasma physics;
- advanced physical-mathematical modelling of energy and nuclear systems, processes, machines and devices;
- advanced reliability, availability, maintainability analysis, prognostics and health management, predictive maintenance and condition-informed risk and resilience assessment of complex systems and critical infrastructures in the nuclear, energy, and other industries;
- thermodynamic, economical and environmental optimization of energy conversion systems.

Some examples of specific research activities that may be developed within STEN programme, related to the Energy and Nuclear fields are:

1. **ENERGY SYSTEMS AND COMPONENTS**: study of combustion and fuel utilization processes with low environmental impact; optimization of thermo-dynamic cycles for generation and cogeneration of mechanical, electrical and thermal power; study of inverse cycles for cooling and conditioning; design of critical components such as gas, steam or hydraulic turbines, compressors, pumps, internal combustion engines and heat exchange devices; heat transfer enhancement; study of renewable technologies; energy from wind, biomass and waste; fuel cells; hydrogen production; micro-co-generation, CO₂ capture and storage techniques; advanced thermal-measurement techniques; CFD.

2. **THERMAL ENGINEERING**: Heat and mass transfer in building envelope and in Heating, Ventilating, Air Conditioning & Refrigeration Equipment and Systems; Indoor Air Quality, Air Filtration and Cleanrooms; Heat Pumps; Solar & Renewable Energy Heating and Cooling; Innovative technologies for building boundaries and bio-climatic projects, automation systems for buildings, energy efficient products and components, environmental and economic impact of energy transformation, technological aspects connected with the use of renewable energy, integration of natural and artificial illumination.
3. NEW GENERATION NUCLEAR POWER PLANTS FOR ENERGY CONVERSION, from the point of view of thermo-hydraulics, thermo-mechanics, neutronics, dynamics and control, fuel and fuel-cycle; nuclear reactors for aerospace applications and nuclear fusion systems; nuclear plant decommissioning, reprocessing, conditioning and radioactive waste disposal, including the issue of radionuclide transport.

4. NUCLEAR TECHNOLOGIES; environmental monitoring, development of innovative nuclear detectors and of the related electronics; radioprotection and nuclear safeguard, development of advanced methods for electronic signal processing; ionizing radiation applications in the technological and energy field as well as in other areas of interest (medical, high energy particle physics, etc.).

Interdisciplinary research projects are advised and encouraged. Participation to conferences, seminars, summer schools, and visiting periods in internationally recognized research institutes and companies are promoted and encouraged as part of the PhD path.

The STEN PhD Programme is run by the Department of Energy and managed by a Faculty Board leaded by a Faculty Board Head. The Head chairs the Faculty Board, coordinates the preparation of the annual Educational Programme and organises the general educational activities of the PhD Programme (see Attachment A1). The Faculty Board is responsible for the Educational programme and for teaching and administrative activities related to the PhD Programme (see Attachment A2).

3. Objectives
The PhD Programme in Energy and Nuclear Science and Technology has the objective of providing a high level education and a challenging research experience in all the areas of Energy and Nuclear sectors, facing the ambitious challenges imposed by the global priorities in sustainable and efficient use of energy resources and decarbonization in all aspects of production, conversion, transport, distribution, storage, management and final use of energy, including urban, industrial and mobility sectors. The PhD graduate will develop the main skills and competences for leading, organizing, planning and managing R&D at the highest international levels in all the fields of Energy and Nuclear Science and Technology.

4. Professional opportunities and job market
The professional profile of the PhD graduate in Energy and Nuclear Science and Technology is that of a specialist capable of performing high level research and of managing and designing innovation in the energy and nuclear fields. In this framework, job opportunities are:

- leading, coordinating and managing research in public and private entities, industrial companies, universities and research institutes;
- coordinating research programmes proposed by national and European legislation, with the capability of managing the required applications, documentation and reports;
• coordinating research programmes in companies, industries and research institutes operating in energy production, conversion and transmission, rational use of energy, risk and reliability analysis of components and systems, production of innovative materials for applications in the energy field and innovative measurement instrumentation and devices;
• managing energy activities in companies characterized by large energy utilization, design and development of innovative energy systems;
• managing and control of nuclear plants and components, design and development of innovative nuclear systems in national and international industries, companies, research and control institutes.

The PhD Programme in Energy and Nuclear Science and Technology also offers those already employed in a company an opportunity to increase their competencies and gain a higher level of professional expertise in the development, management and coordination of research activities, with respect to that provided by the Master of Science and Master study courses. PhD graduates will be capable of playing managerial roles, providing a strategic contribution to the growth of their companies.

5. Enrolment

5.1 Admission requirements
Italian and International citizens can apply. They are requested to have graduated in accordance with the pre-existing laws D.M. 3.11.1999 n. 509, or to have a Master of Science degree in accordance with D.M. 3.11.1999 n. 509, or a Master of Science in accordance with D.M. 22.10.2004 n. 270, or similar academic title obtained abroad, equivalent for duration and content to the Italian title, with an overall duration of university studies of at least five years.
The certified knowledge of the English language is a requirement for admission. Please refer to the PhD School website for details.
The admission to the programme will be established according to the evaluation of the candidates' curricula, motivation letters, and an illustrative report about the development of a possible PhD research, which candidates will send contextually with their application to the admission announcement.

5.2 Admission deadlines and number of vacancies
The number of positions is indicated in the Call for admission to the 38th PhD cycle Programmes: http://www.dottorato.polimi.it/en/
Scholarships both on general and on specific themes are available, in accordance with what is specified in the call for admission.

6. Contents

6.1 Requirements for the PhD title achievement
The achievement of the PhD title in Energy and Nuclear Science and Technology requires a study and
research activity of at least three years equivalent full-time study and research and the development of the PhD thesis. PhD candidates in Energy and Nuclear Science and Technology must earn a minimum of 20 course credits (see paragraph 6.3 below), and to continuously conduct studies and research. At the beginning of the course, the Faculty Board assigns a tutor to each PhD candidate to supervise and assist him/her in the overall training programme. The tutor shall be a professor belonging to the Faculty Board. The PhD candidate chooses the educational path and activities in agreement with the tutor and the supervisor. The tutors assist the candidates in the selection of the courses to include in the study plan, which is eventually submitted for approval to the Head of the PhD Programme (see also section 6.4 below). The Faculty Board may assign extra course credits to one or more candidates, in case they need to complete their preparation in specific topics, relevant for their research projects.

6.2 Research development
The main aim of all Politecnico di Milano PhD programmes is the development in the candidates of a research-oriented mind-set, with expertise and skills in a specific research topic. To this end, candidates develop a problem-solving capability in complex contexts, including the capacity of performing deep problem analysis, identifying original solutions, and evaluating their applicability in practical contexts. These skills provide the PhD candidates with major opportunities of development in their research both in the academic field, and in public and private organizations.

PhD candidates are requested to develop an original research contribution. The PhD thesis must thus contribute to increase the knowledge in the candidate's research field. Besides, it has to be coherent with the research topics developed in the Department where the PhD Programme is carried out.

The original research results are collected in the PhD thesis, where the candidate's contribution is put in perspective with respect to the research state of the art in the specific research field.

The duration of the programme is normally three years and the PhD research is developed under the guidance of a supervisor, who supports the candidate in the setting-out and in the everyday activities related to the thesis development. The supervisor is not necessarily a member of the Faculty Board, and may also belong to an institution different from Politecnico di Milano. The supervisor can be supported by one or more co-supervisors.

To develop the capability of carrying out research activities, candidates must earn a minimum of 20 credits from courses coherent with their PhD programme.

Further activities intended to develop the candidate's personal skills and research expertise are encouraged during the PhD path.

Candidates must acquire the capability to present and discuss their work in their research community. Consequently, both the participation to international conferences and the publication of the research results in peer-reviewed journals are encouraged.

The PhD programme favors the candidates' research interactions with other groups in their research field, preferably abroad. Research visits of at least three months are strongly encouraged, as through them the candidates may acquire further skills to develop their research work and thesis.

6.3 Objectives and general framework of the teaching activities
The PhD Programmes and the PhD School activate teaching forms of different kind and credit value, including courses, seminars, project workshops, laboratories. Teaching activities both cover the basic
research issues (problems, theories, methods), which represent the founding element of the PhD Programme and identify clearly its cultural position, and deepening in a specialist way some research issues connected with the problems developed in the theses.

Lessons are usually held in English, except when indicated otherwise. The PhD programme includes at least one complete path delivered in English language.

Structured teaching activities allow to earn ECTS credits. Other activities, typically specialised and for which it is difficult to evaluate the learning and its quantification, fall within the scientific activities of which the Faculty Board takes into account in the overall evaluation, but they do not allow to earn ECTS.

The PhD School of Politecnico di Milano proposes a set of courses aiming to train the PhD candidates in soft and transferable skills. The skills and abilities provided by these courses are expected to help candidates across different areas of their careers in order to respond to the rapidly evolving needs of the global economy and society at large. The PhD School courses activated for the 2022-2023 Academic Year are summarized in the following table.

<table>
<thead>
<tr>
<th>Professor</th>
<th>Course title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor</td>
<td>Course name</td>
</tr>
<tr>
<td>Armondi Simonetta</td>
<td>Strengthening Critical Spatial Thinking</td>
</tr>
<tr>
<td>Biscari Paolo</td>
<td>English for Academic Communication</td>
</tr>
<tr>
<td>Biscari Paolo</td>
<td>Industrial Skills</td>
</tr>
<tr>
<td>Biscari Paolo</td>
<td>Scientific Communication in English</td>
</tr>
<tr>
<td>Brunetto Domenico</td>
<td>Innovative Teaching Skills</td>
</tr>
<tr>
<td>Canina Maria Rita</td>
<td>Creative Design Thinking</td>
</tr>
<tr>
<td>Cardilii Lorenzo</td>
<td>European Culture</td>
</tr>
<tr>
<td>Di Blas Nicoletta</td>
<td>Professional Communication</td>
</tr>
<tr>
<td>Fuggetta Alfonso</td>
<td>Project Management Basics</td>
</tr>
<tr>
<td>Oxoli Daniele</td>
<td>The Copernicus Green Revolution for Sustainable Development</td>
</tr>
<tr>
<td>Iarossi Maria Pompeiana</td>
<td>Power of Images and Visual Communication for Research Dissemination</td>
</tr>
<tr>
<td>Masarati Pierangelo</td>
<td>Ethical Aspects of Research on Dual-Use Technologies</td>
</tr>
<tr>
<td>Mauri Michele</td>
<td>Research Communication. Issue mapping: exploring public debates surrounding academic topics</td>
</tr>
<tr>
<td>Ossi Paolo Maria</td>
<td>Sulla responsabilità tecnica</td>
</tr>
<tr>
<td>Oppio Alessandra</td>
<td>How to support Complex decisions: Approaches and Tools</td>
</tr>
<tr>
<td>Paganoni Anna Maria</td>
<td>La comunicazione nella Scienza</td>
</tr>
<tr>
<td>Pizzocaro Silvia Luisa</td>
<td>Practicing Research Collaboration</td>
</tr>
<tr>
<td>Sancassani Susanna</td>
<td>Teaching Methodologies, Strategies and Styles</td>
</tr>
<tr>
<td>Sciuto Donatella</td>
<td>Research Skills</td>
</tr>
<tr>
<td>Volonte' Paolo Gaetano</td>
<td>Introduction to Academic Research</td>
</tr>
<tr>
<td>Mancini Mauro</td>
<td>Project Management (In Action)</td>
</tr>
<tr>
<td>Tanelli Mara</td>
<td>Cognitive biases and discriminations: implications, risks and opportunities</td>
</tr>
<tr>
<td>Balducci Alessandro</td>
<td>Approaches to Resilience: Social, Economic, Environmental and Technological Challenges of Contemporary Human</td>
</tr>
</tbody>
</table>
At least 10 out of the 20 course credits that each candidate is required to earn shall be obtained through soft and transferable skills courses organized by the PhD School.

Depending on the candidate’s background and research area, the tutor and the supervisor can suggest attending appropriate courses from Master of Science programmes in Energy Engineering, Nuclear Engineering and possibly from other Programmes. Such courses are intended to adequately expand the candidate’s knowledge.

Education in Energy and Nuclear Science and Technology PhD Programme is based on a minimum of 20 credits.

The candidate must attend and pass exams of courses from the PhD Programme in Energy and Nuclear Science and Technology, from other PhD Programmes at the Politecnico di Milano and/or from those offered by the PhD School and, in special cases, from PhD Programmes at other universities, according to the following rules:

- 10 credits must be obtained through soft and transferable skills courses organized by the PhD School (i.e. 2 courses 5 credits each)
- 5 credits must be obtained by passing the exam of at least one course among the following organized within the frame of the PhD Programme in Energy and Nuclear Science and Technology (see table A)
- 5 credits must be obtained by passing the exam of courses from the PhD Programme in Energy and Nuclear Science and Technology, or from other PhD Programmes at the Politecnico di Milano or from PhD Programmes at other universities. In the last case the course must be proposed and approved by the Faculty.

The tables below summarize the candidate’s path (as regards coursework activities). At the same time, the programme foresees that the candidates are devoted to research activity in a continuous way, following the lead of their supervisors, and of the Faculty Board.

First/Second Year
In the first two years the candidate must acquire a minimum of 20 educational credits. Any exception must be approved in advance by the Board of Professors.

Third year
In the third year the candidate should be devoted entirely to the research and to the development of the PhD thesis.

PhD Course List

A) The PhD Programme in Energy and Nuclear Science and Technology organizes the **Characterising Courses** listed in table A. For the admission to the final exam the acquisition of at least 5 credits in this list is **mandatory**.
The PhD School organizes every year general and Interdoctoral courses. The acquisition of at least 10 credits is mandatory among the courses of B type. The list of PhD courses organized by the PhD School is also available at the website: https://www.dottorato.polimi.it/en/prospective-phd-candidates/single-courses

C) Other PhD courses
Credits can be obtained from type A or B PhD courses or from other courses provided by other PhD programmes of the Politecnico and/or external entities (in this case, prior approval of the supervisor, the tutor and the Board of Professors is mandatory)

PREPARATORY COURSES (only if foreseen)

If the supervisor and the tutor find it useful or necessary that the candidate attends preparatory courses (chosen among the activated courses at the Politecnico di Milano) the Faculty Board of the PhD programme may assign some extra-credits to be acquired to complete the training path. The credits acquired in this way will be considered as additional, in relation to the mandatory credits to be acquired with the PhD courses.

SPECIALISTIC COURSES, LONG-TRAINING SEMINARS
The attendance of Specialist Courses, Workshops, Schools, Seminars cycles is strongly encouraged and (if these seminars, workshops are certified and evaluated) may permit to acquire credits according the modalities established by the Faculty Board and previous approval of the study plan submitted by the candidate. These courses and workshops can be inserted in the study plan, even if they are not evaluated (and therefore not qualified as credits), as optional “additional teaching”.

The scheduled course planning for the academic year 2022/2023 follows. Other courses may be activated during the year. In this case the candidates will be promptly informed, and it will be allowed to insert these new courses in their study plan.

Table A: PHD COURSES CHARACTERISING THE PHD PROGRAMME

<table>
<thead>
<tr>
<th>SDS</th>
<th>Name of Course</th>
<th>Professor (coordinator)</th>
<th>A.Y./Semester</th>
<th>Credits</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ING-IND/10</td>
<td>Thermodynamics. Equilibrium and nonequilibrium</td>
<td>Beretta G.</td>
<td>1 year, 1 sem</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ING-IND/20</td>
<td>Radiation Protection and Instrumentation in Nuclear Systems</td>
<td>Agosteo S.</td>
<td>1 - 2 sem</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ING-IND/07</td>
<td>Advanced Measurement Methods</td>
<td>Cozzi F.</td>
<td>1 - 2 sem</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

6.4 Presentation of the study plan
PhD candidates must submit a study plan, which may be revised periodically (approximately every three months), in order to adequate them to possible changes in the course list, or to needs motivated by the development of their PhD career. The study plans must be approved by the PhD programme Coordinator, according to the modalities established by the Faculty Board of the PhD Programme itself.
6.5 Yearly evaluations
Candidates present their work to the Faculty Board at least once a year. In particular, the candidates must pass an annual evaluation in order to be admitted to the following PhD year. The third year evaluation establishes the candidate's admission to the final PhD defense.
As a result of each annual evaluation, the candidates who pass the exam receive an evaluation (A/B/C/D) and may proceed with the enrolment at the following year. Candidates who do not pass the exam are qualified either as “Repeating candidate” (Er) or “not able to carry on with the PhD (Ei)”. In the former case (Er), the candidates are allowed to repeat the PhD year at most once. The PhD scholarships – if any – are suspended during the repetition year. In the latter case (Ei) the candidates are excluded from the PhD programme and lose their scholarships – if any.
In case the Faculty Board holds appropriate to assign directly an exclusion evaluation (Ei) without a previous repetition year, the request must be properly motivated, and validated by the PhD School.
After the final year, candidates who have achieved sufficient results but need more time to conclude their research work and write their theses, may obtain the admission to a further year.
Deadlines for submission of documentation and evaluation of eligibility of the candidate for the following year are indicatively scheduled as follows:

- first week of September 2023: deadline for submission of documents related to the 1st year, with evaluation by the Board of Professors within September 2023;
- last week of September 2024: deadline for submission of documents related to the 2nd year, with evaluation by the Board of Professors in October 2024;
- first week of October 2025: deadline for submission of documents related to the 3rd year, with evaluation by the Board of Professors in the second half of October 2025.

Any changes (and any further detail) regarding these deadlines will be communicated to all candidates by both the Coordinator of the PhD Programme and the tutors in due time

6.6 PhD thesis preparation
The main objective of the PhD career is the development of an original research contribute. The PhD thesis is expected to contribute to the advance of the knowledge in the candidate's research field.
The PhD study and research work is carried out, full time, during the three years of the PhD course. Stages or study periods in (Italian or International) companies or external Institutions may complete the candidate's preparation.
The resulting theses need to be coherent with the research issues developed in the Department where the PhD programme is developed.
The candidate must present an original thesis, discuss its contribution to the state of the art in the research field in the research community.
The PhD research is developed following the lead of a supervisor, who supports the candidate in the setting out and in the everyday activities regarding the thesis development.
At the conclusion of the PhD studies, the Faculty Board evaluates the candidates. Candidates who receive a positive evaluation submit their theses to two external reviewers for refereeing. If the
evaluation provided by the reviewers is positive (or after the revisions required by the external reviewers), the candidates defend their thesis in a final exam, in front of a Committee composed of three members (at least two of which must be external experts).

7. Laboratories, PhD Secretary Services
For development of the PhD thesis the Department of Energy offers many research laboratories and infrastructures. For more information, see http://www.energia.polimi.it

PhD Secretary:
Paola Robustelli
Department of Energy
Phone: +39 02 2399 3951
e-mail: PhD-STEN@polimi.it, paola.robustelli@polimi.it

Operation Manager and Administrative Secretary:
Andrea Papoff
Department of Energy
Phone: +39 02 2399 6571
e-mail: andrea.papoff@polimi.it

8. Internationalisation and inter-sectoriality
Carrying out study and research activities at external laboratories is strongly recommended. Politecnico di Milano supports joint PhD paths with International Institutions, as well as Joint and Double PhD programmes. Further information is available on the PhD School website and on the STEN PhD programme website.

More specifically, the STEN PhD programme collaborates with several international universities. An uncomplete list of the most recently activated double or joint PhD agreements includes the following institutions:

- Aalto University
- Delft University of Technology
- Ecole nationale supérieure Mines-Télécom Atlantique Bretagne
- Eidgenössisch Technische Hochschule (ETH) Zurich
- Eindhoven University of Technology
- Harbin Institute of Technology
- Peter the Great St.Petersburg Polytechnic University
- Queensland University of Technology
- Sharif University of Technology, Teheran
- Université Sorbonne Paris Nord

STEN also participate to EASYGO and to GREYDIENT Marie Skłodowska-Curie Actions: MSCA are European Union’s reference programmes for doctoral education and postdoctoral training.
Interaction with and exposure to non-academic sectors provides significant benefits to doctoral candidates as well as to research and innovation intensive employment sectors. Direct exposure to the challenges and opportunities in non-academic sectors of the economy and society at large is fostered by networking, connectivity, inter-sectoral mobility and wide access to knowledge. In particular, the STEN PhD programme collaborates with several Research Agencies and Industrial partners. Among others:

- CNR, Consiglio Nazionale delle Ricerche
- IIT, Istituto Italiano di Tecnologia
- ENEA, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile
- Fondazione ENI Enrico Mattei
- ENI, Ente Nazionale Idrocarburi
- ENEL SpA
- Baker&Hughes
- EURAC
- SNAM
- RSE, Ricerca sul Sistema Energetico

Attachment A1 – PhD Programme Head

Prof. Vincenzo Dossena

Full Professor of Fluid Machines, holding the Courses of "Fluid Machines" and "Design of Fluid Machines for Green Power Generation" at Politecnico di Milano.

Member of the Board of Professors of the PhD Programme in Energy and afterwards in Energy and Nuclear Science and Technology (STEN) from 2006; Deputy Head of the Energy Department from 2016 to 2019 and member of the Scientific Committee of the GVPM (Wind Tunnel of Politecnico di Milano) since 2017. Head of the Laboratory of Fluid Machines (LFM).

The scientific research activity is mainly aimed at the study of fluid dynamics and performance of fluid machines and their components. Particular attention has been devoted to turbomachines operating with organic fluids (ORC). In 2016 Prof. Dossena was one of the founders of the CREA LAB (Compressible fluid dynamics for Renewable Energy Applications laboratory), an interdisciplinary experience gathering together researchers from three Departments of Politecnico di Milano.

Further areas of scientific interest concern wind turbines, particularly vertical axis wind turbines (VAWT), also operating in floating off-shore arrangements., and safety valves when operating in peculiar technical situations. Prof. Dossena has been twice Invited Lecturer at the Von Karman Institute for Fluid Dynamics (Brussels) for two cycles of lectures entitled.

Prof. Dossena has been the Scientific Coordinator of several Research Contracts with major national and international industries operating in the turbomachinery field and responsible for research contracts granted by public institutions.

Prof. Dossena is author of 83 scientific publications, counting for more than 1200 citations and a Hirsh Index of 20 (source Scopus 2022).
Attachment A2 – PhD Faculty Board
Description of the composition of the Faculty Board

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>SDS/ Title of SDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOSSENA Vincenzo (Coordinator)</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/08 Fluid machinery</td>
</tr>
<tr>
<td>CAMPANARI Stefano</td>
<td>Politecnico di Milano, ENERGY</td>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>CASALEGNO Andrea</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/10 Thermal engineering and industrial energy systems</td>
</tr>
<tr>
<td>CASARI Carlo Spartaco</td>
<td>Politecnico di Milano, ENERGY</td>
<td>FIS/03 Physics of matter</td>
</tr>
<tr>
<td>CHIESA Paolo</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/09 Energy systems and power generation</td>
</tr>
<tr>
<td>COLOMBO Luigi</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/10 Thermal engineering and industrial energy systems</td>
</tr>
<tr>
<td>DI MAIO Francesco</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/19 Nuclear power plants</td>
</tr>
<tr>
<td>GIACOBBO Francesca Celsa</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/18 Nuclear reactor physics</td>
</tr>
<tr>
<td>GIULINI CASTIGLIONI AGOSTEO Stefano Luigi Maria</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/20 Nuclear measurements and instrumentation</td>
</tr>
<tr>
<td>GROPPI Gianpiero</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/27 Chemical technologies</td>
</tr>
<tr>
<td>JOPPOLO Cesare Maria</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/11 Building physics and building energy systems</td>
</tr>
<tr>
<td>LUZZI Lelio</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/19 Nuclear power plants</td>
</tr>
<tr>
<td>MARIANI Mario</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/20 Nuclear measurements and instrumentation</td>
</tr>
<tr>
<td>MAZZARELLA Livio</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/11 Building physics and building energy systems</td>
</tr>
<tr>
<td>MEREU Riccardo</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/10 Thermal engineering and industrial energy systems</td>
</tr>
<tr>
<td>ONORATI Angelo</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/08 Fluid machinery</td>
</tr>
<tr>
<td>PASSONI Matteo</td>
<td>Politecnico di Milano, ENERGY</td>
<td>FIS/03 Physics of matter</td>
</tr>
<tr>
<td>PERSICO Giacomo Bruno Azzurro</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/08 Fluid machinery</td>
</tr>
<tr>
<td>POLA Andrea</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/20 Nuclear measurements and instrumentation</td>
</tr>
<tr>
<td>RICOTTI Marco</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/19 Nuclear power plants</td>
</tr>
<tr>
<td>RINALDI Fabio</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/10 Thermal engineering and industrial energy systems</td>
</tr>
<tr>
<td>ROMANO Matteo Carmelo</td>
<td>Politecnico di Milano, ENERGY</td>
<td>ING-IND/09 Energy systems and power generation</td>
</tr>
<tr>
<td>RUSSO Valeria</td>
<td>Politecnico di Milano, ENERGY</td>
<td>FIS/03 Physics of matter</td>
</tr>
<tr>
<td>ZAVELANI ROSSI Margherita</td>
<td>Politecnico di Milano, ENERGY</td>
<td>FIS/03 Physics of matter</td>
</tr>
</tbody>
</table>
Attachment A3 – PhD Advisory Board

Description of the composition of the Advisory Board

<table>
<thead>
<tr>
<th>Surname</th>
<th>First name</th>
<th>Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRUNA</td>
<td>Gianni</td>
<td>IRSN</td>
</tr>
<tr>
<td>LONTANO</td>
<td>Maurizio</td>
<td>Istituto di Fisica del Plasma - CNR</td>
</tr>
<tr>
<td>ROMER</td>
<td>Arturo</td>
<td>Nuklearforum</td>
</tr>
<tr>
<td>LOMBARDI</td>
<td>Carlo</td>
<td>EnergyLab Foundation</td>
</tr>
<tr>
<td>ORTIS</td>
<td>Alessandro</td>
<td>Fondaz. Einaudi/OPEF</td>
</tr>
<tr>
<td>GENTILE</td>
<td>Daniela</td>
<td>Ansaldo Energia, Executive Vice President R&D</td>
</tr>
<tr>
<td>PAPA</td>
<td>Carlo</td>
<td>Enel Foundation, Director</td>
</tr>
<tr>
<td>MUZZIO</td>
<td>Adriano</td>
<td>Unione Italiana Termofluidodinamica</td>
</tr>
</tbody>
</table>

The advisory board meeting will be held during the next cycle: for the present one, as no substantial change has been introduced in the project, there was no need for the above meeting.