

## PhD in INGEGNERIA AEROSPAZIALE / AEROSPACE ENGINEERING - 40th cycle

THEMATIC Research Field: PROGETTO SPACE IT UP CONTRATTO DI FINANZIAMENTO ASI N. 2024-5-E.0 CUP MASTER I53D24000060005 CUP POLIMI D43C24000350006 -MULTISPECTRAL IMAGING FOR SPACECRAFT ON-BOARD GUIDANCE SYNTHESIS

| Monthly net income of PhDscholarship (max 36 months)                                                 |  |
|------------------------------------------------------------------------------------------------------|--|
| € 1600.0                                                                                             |  |
| In case of a change of the welfare rates during the three-year period, the amount could be modified. |  |
|                                                                                                      |  |
| Context of the research activity                                                                     |  |

|                                                            | Pondo di finanziamento ASI degrato z. 687/2022              |
|------------------------------------------------------------|-------------------------------------------------------------|
|                                                            | Bando di linanziamento ASI decreto n. 687/2022 -            |
|                                                            | Deliberazione n. 71/2022 – Ternatica 15 Attivita spaziali,  |
|                                                            | di cui all'avviso MUR n. 341/2022 per Partenariati estesi.  |
|                                                            | Progetto di ricerca "SPACE IT UP!" approvato con            |
|                                                            | decreto ASI n. 53/2024. Contratto di finanziamento ASI n.   |
|                                                            | 2024-5-E.0 (COP Master 153D24000060005; COP                 |
| Motivation and objectives of the research<br>in this field | POLIMI D43C24000350006).                                    |
|                                                            | ASI Funding Notice Decree No. 687/2022 - Resolution         |
|                                                            | No. 71/2022 - Topic 15 Space Activities, referred to MUR    |
|                                                            | Notice No. 341/2022 for Extended Partnerships. Research     |
|                                                            | project "SPACE IT UP!" approved by ASI Decree No.           |
|                                                            | 53/2024. ASI Funding Agreement No. 2024-5-E.0 (CUP          |
|                                                            | Master I53D24000060005; CUP POLIMI                          |
|                                                            | D43C24000350006).                                           |
|                                                            | The proposed research investigate multi-measurements        |
|                                                            | coupled with innovative data management techniques to       |
|                                                            | support operations in space merging the navigation and      |
|                                                            | guidance tasks. Particular attention is given to multi-band |
|                                                            | imaging sensors and Artificial Intelligence techniques to   |
|                                                            | synthetize from the image acquisition effective guidance    |
|                                                            | strategies. The need to increase the decision making        |
|                                                            | capabilities on board space vehicles is the more dictated   |
|                                                            | by the new emerging scenarios dealing on one side with      |
|                                                            | proximity operations in fast dynamics such as formations,   |
|                                                            | servicing on orbit, landing and on the other side with high |



|                                                                                        | precision requirements in terms of localization and<br>control. The multi-band imaging unlocks the<br>measurements acquisition from lighting conditions and<br>offers broader signal sources from natural objects in<br>space too as stars and small bodies. Image based<br>navigation and control are largely studied in the vision<br>domain even if still young in its on-orbit real applications;<br>room for improvement exists in many areas: the research<br>wants to contribute to: larger signal band exploitation,<br>processing burden reduction, measurements into direct<br>control strategy synthesis settlement. Robustness to<br>sw\hw failure and malfunctioning will be considered as<br>well, being relevant aspects which can jeopardize the<br>effectiveness of the image processing in highly radiation<br>environment. The research aims assessing the<br>performance of the architectures identified along the study<br>first numerically and then experimentally to get to a TRL4<br>taking advantage of the facilities the research group<br>developed along time.                                                                                                   |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methods and techniques that will be<br>developed and used to carry out the<br>research | The research will take advantage of the state of the art in<br>the research group for VIS-IR image processing and<br>synthetic sets generation as benchmark and input to focus<br>on the investigation of possible approaches to fuse the<br>navigation and guidance tasks by images manipulation.<br>To this end, different techniques in the basin of the data<br>mining and deep learning algorithms will be considered to<br>assess the feasibility of a guidance profile synthesis<br>directly from imaging sensors inputs. Increasing<br>complexity scenarios will be considered to develop and<br>test a numerical framework then followed by hardware in<br>the loop; the complexity will entail scenarios out of<br>nominal either because of injected failures or because of<br>scenes out of the training database, as well as tighter<br>requirements in the guidance synthesis such as high<br>reactivity, large authority on the free dynamics. To get to<br>a valuable assessment against the expected bottlenecks,<br>an experimental phase is also foreseen to check for the<br>computational feasibility of the implemented tool with<br>flight-like processors in the loop. |



| Educational objectives            | The specific objective of this PhD is to develop skills in<br>advanced guidance and navigation for a new generation<br>of more demanding unmanned spacecraft, which might<br>benefit of some AI techniques in data processing with<br>particulat attention to imaging data sources. The<br>candidate will refine his/her competences in<br>mathematical\numerical modelling, and experimental<br>campaign settling and running. Moreover, he/she would<br>enhance his/her knowledge in the area of AI techniques<br>for data management; during his/her research period<br>he/she will get in contact with external entities, public and<br>private being the topic quite in line with many on going<br>activities in the group. Technical education will be<br>complemented by a broad variety of soft skills, including<br>presentation of the research, report writing, outreach,<br>dissemination, and preparation of progress meetings. |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Job opportunities                 | The job opportunities that this project opens up are in the field of space system engineering, modelling and PII\HIL testing, with focus on GNC skills for increased autonomous assets, not limited to the space industrial parterre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Composition of the research group | 1 Full Professors<br>0 Associated Professors<br>2 Assistant Professors<br>9 PhD Students                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Name of the research directors    | Prof. Michelle Lavagna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## Contacts Dipartimento di Scienze e Tecnologie Aerospaziali - Politecnico di Milano - via La Masa 34, 20156 Milano - Italy - tel. +390223998323 - fax +390223998334 - email: michelle.lavagna@polimi.it - web site: www.aero.polimi.it





| Additional support - Financial aid per PhD student per year (gross amount) |  |  |
|----------------------------------------------------------------------------|--|--|
| Housing - Foreign Students                                                 |  |  |
| Housing - Out-of-town residents<br>(more than 80Km out of Milano)          |  |  |

| Scholarship Increase for a period abroad |         |  |  |
|------------------------------------------|---------|--|--|
| Amount monthly                           | 800.0 € |  |  |
| By number of months                      | 6       |  |  |

Additional information: educational activity, teaching assistantship, computer availability, desk availability, any other information

The PhD candidate will receive a desk, possibly through a hot-desking procedure, and a personal computer, if needed. Apart from the compulsory ones, the PhD candidate will have the opportunity to follow additional courses and receive economic support to attend summer schools and participate in conferences. There will be the possibility of paid teaching assistantship.