

# PhD in ARCHITETTURA, INGEGNERIA DELLE COSTRUZIONI E AMBIENTE COSTRUITO / ARCHITECTURE, BUILT ENVIRONMENT AND CONSTRUCTION ENGINEERING - 38th cycle

INTERDISCIPLINARY Research Field: 'SMART DAMPER', VISCOUS DAMPER WITH ADAPTIVE BEHAVIOR FOR THE SEISMIC PROTECTION OF CONSTRUCTIONS

Monthly net income of PhDscholarship (max 36 months)

€ 1275.0

In case of a change of the welfare rates or of changes of the scholarship minimum amount from the Ministry of University and Reasearch, during the three-year period, the amount could be modified.

| Context of the research activity                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Con                                                        | Interdisciplinary PhD Grant<br>The PhD research will be carried out in collaboration with<br>research groups of the PhD programme in " <b>MATERIALS</b><br><b>ENGINEERING</b> ".<br>See https://www.dottorato.polimi.it/?id=422&L=1 for<br>further information.<br>Supplementary energy dissipation is a modern seismic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Motivation and objectives of the research<br>in this field | mitigation technique for the protection of constructions<br>from the effects of earthquakes. The technique is based<br>on the introduction, within the structural assembly, of<br>suitable devices (called 'dampers'), wherein the<br>dissipation of most of the earthquake energy is<br>concentrated, thus safeguarding the structural elements<br>committed to supporting gravitational loads. Among the<br>most common devices today in use, both for buildings and<br>for road infrastructures such as bridges and viaducts,<br>there are the fluid dynamic dampers, which dissipate<br>energy through the lamination of a viscous fluid that is<br>forced to pass through channels of small section. The<br>mechanical response of the dampers depends on the<br>intensity of the seismic action, which determines the<br>speed with which the viscous fluid is pushed in the |  |
|                                                            | channels. The dampers are typically designed with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |



|                                                                                        | reference to a design earthquake (or set of earthquakes),<br>and provide the best performance in response to the<br>seismic input, while their effectiveness is reduced in the<br>presence of earthquakes with different characteristics.<br>The proposed research aims to develop fluid dynamic<br>dampers with adaptive behavior, whose mechanical<br>response can be modified, even in real time, in order to<br>adapt to the features of the particular seismic input and to<br>provide optimal performance in response to different<br>excitations in terms of intensity, frequency content,<br>duration. The goal is pursued through the development of<br>a fluid-dynamic damper that uses a fluid whose viscosity<br>can change by several orders of magnitude as a function<br>of an external electric or magnetic field, controlled<br>automatically by a sensing system installed in the host<br>structure.                                                                                                                                            |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methods and techniques that will be<br>developed and used to carry out the<br>research | The research topic is highly multidisciplinary and requires<br>the integration of skills in structural and seismic<br>engineering, in material science and engineering, and in<br>fluid dynamics.<br>Methods that will be developed and used to carry out the<br>research include structural monitoring, multiphysics<br>modeling, experimental characterization of fluids, testing<br>of damper prototypes, and seismic analysis and design of<br>structures equipped with dampers.<br>The research will make use of collaborations with the<br>Department of Chemistry, Materials and Chemical<br>Engineering (DCMIC) of Politecnico for the experimental<br>characterization of the rheological behavior of Newtonian<br>and non-Newtonian fluids also with electrorheological and<br>magnetorheological characteristics, and for the study and<br>optimization of the performance of dampers through their<br>multiphysics simulation, and with the Materials Testing<br>Laboratory of Politecnico for testing of prototypes of<br>adaptive behavior dampers. |
| Educational objectives                                                                 | The PhD programme aims at preparing researchers with<br>the skills and aptitude to pursue multidisciplinary research<br>in industries, research centers, or academic institutions, in<br>the field of seismic protection of constructions. The PhD<br>programme will also develop team working attitude and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



|                                   | will create opportunities for international collaborations.                                                                                                                                      |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Job opportunities                 | <ul> <li>R&amp;D in industries manufacturing seismic protection<br/>systems</li> <li>Structural designer in engineering firms</li> <li>Researcher in research centers or universities</li> </ul> |
| Composition of the research group | 1 Full Professors<br>2 Associated Professors<br>1 Assistant Professors<br>1 PhD Students                                                                                                         |
| Name of the research directors    | Profs. V. Quaglini, F. Briatico Vangosa                                                                                                                                                          |

Contacts

virginio.quaglini@polimi.it +39.02.2399.4248

| Additional support - Financial aid per PhD student per year (gross amount) |  |  |
|----------------------------------------------------------------------------|--|--|
| Housing - Foreign Students                                                 |  |  |
| Housing - Out-of-town residents<br>(more than 80Km out of Milano)          |  |  |

| Scholarship Increase for a period abroad |         |  |
|------------------------------------------|---------|--|
| Amount monthly                           | 637.5 € |  |
| By number of months                      | 6       |  |

Additional information: educational activity, teaching assistantship, computer availability, desk availability, any other information

Additional support:

#### Budget for the research activity:

total amount Euro 5,197.62 per student In detail:

- 1st year Euro 1,732.54

- 2nd year Euro 1,732.54
- 3rd year Euro 1,732.54

### Interdisciplinary cooperation:

the PhD Candidate will benefit from initiatives organized by both PhD Programmes involved.

### Additional information can be found in the Regulations for the 38th Cycle of ABC-PhD:

### POLITECNICO DI MILANO



download is available at link: https://beep.metid.polimi.it/web/abcphd/documenti-e-media

## Additional information about ABC department and ABC-PhD programme:

available at link: https://www.dabc.polimi.it/

### Desk availability:

The ABC department provides non-permanent desks to be temporarily booked in common PhD rooms.